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Abstract 

We s tudy  a Schr~Sdinger equat ion  involving a Hamil tonian that  is a second-order differential 
operator ,  describes free spin% particles with b o t h  energy signs and a defini te mass,  and 
depends  on  a parameter  G. One obtains the  usual  Dirac Hamil tonian by  sett ing G = ±i, 
bu t  for real values of  G the one-particle theory  developed here possesses an indefinite 
metr ic ,  so negative energy states have negative normalizat ion.  Al though the new equat ion 
is not  manifes t ly  covariant, it is demons t ra ted  tha t  it can be made invariant under  proper 
o r thochronous  Poincar6 t ransformat ions;  it is also invariant under  the  CPT t ransforma-  
tion and charge conjugat ion,  bu t  not ,  as we interpret  it, under  space inversion. 

1. h~troduction 

Foldy (1956) has speculated on the existence of covariant wave equations 
whose second quantization requires the opposite of  the usual spin-statistics 
relation; to illustrate this possibility we consider here and in another paper 
(Guertin, 1975b) that is to follow a new equation describing free spin-½ par- 
ticles. In this paper we discuss the indefinite metric associated with our equa- 
tion when it is interpreted as a one-particle equation, its discrete symmetry 
properties, and its invariance under proper orthochronous Poincar6 transform- 
ations. The next paper will consider the sense in which second quantization is 
consistent with Bose statistics. 

Our equation involves a Hamiltonian, H, that is a four by four matrix 
depending on a parameter G. This Hamiltonian is also a second-order differ- 
ential operator whose square yields the familiar relativistic relation between 
the squares of the energy, the momentum, and the mass, so it describes free 
particles with both energy signs and a definite mass. If G = -+i, it is equal to 
the familiar Dirac Hamiltonian that describes spin-½ particles, and the theory 
possesses a positive definite metric. On the other hand, for real values of  
G 4 = 0, H also describes spin-½ particles but is pseudo-Hermitian; i.e., 

HT = P3IIP3 
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and the indefinite metric leads to a negative normalization for negative energy 
states, as is the case in the Sakata-Taketani spin-0 and spin-1 theories (Sakata 
& Taketani, 1940; see also Heitler, 1943) and their generalizations to arbitrary 
spin (Guertin, 1974, 1975a). In contrast to the Dirac equation, which is invariant 
separately under space inversion, time inversion, and charge conjugation, the 
new equation, although invariant under CPT and under charge conjugation, is not 
separately invariant under either space inversion or time inversion. We are careful 
to explain in Section 3 why the metric is required to be indefinite, since one 
can always force either a positive definite metric or an indefinite one on a free- 
particle Hamiltonian, and also to explain in Section 4 why we do not interpret 
the theory as being invariant under space inversion. 

Although the new equation cannot be manifestly covariant, it can be made 
invariant under proper orthochronous Poincar6 transformations, as we discuss 
in Sections 5 and 6. If A is any transformation belonging to the proper ortho- 
chronous Lorentz group, then the wave function in a manifestly covariant 
theory such as that associated ¢¢ith the Dirac equation has the transformation 
property 

¢'(x)  = S(A)~(A-tx)  

where S is some matrix that acts only on the discrete indices of  ft. In the 
new theory, however, S also depends on the differential operator V, except 
when A is a rotation about some space axis. In the next paper, p. 405, we will 
demonstrate that when the theory is second-quantized the field and its adjoint 
commute for spacelike distances. The reason why this does not contradict the 
usual spin-statistics proofs (e.g., Pauli, 1940; Streater and Wightman, 1964) 
is that manifest covariance has been one of the assumptions upon which such 
proofs have been based. 

The treatment in this and the following paper should be regarded only as 
the starting point in the construction of a theory describing spin-½ bosons, 
and it may happen that there is no consistent way in which to introduce 
interactions, a matter that is discussed in Section 8. However, if there is such 
a way, it will be extremely interesting to learn the physical significance of the 
real parameter G that appears in the new equation. 

2. The Hamiltonian 

We wish to consider the possibility of describing free massive particles by 
using as the Hamiltonian the four by four matrix operator 

H =  (P3 + iP2)( 1 + GZ)p2/2m + iGpl ~'P +P3 m (2.1) 

where the/9 matrices are formally equivalent to the Pauli matrices but com- 
mute with them. Here p = I p I and m > 0 is real. Regardless of  the momentum 
dependence of G one has 

H 2 = E 2 (2.2a) 
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where 

E = (/)2 + m2)1/2 (2.2b) 

However, in this paper we shall omit a possible momentum dependence of  G 
and assume that it is a constant. Thus, H is of  second order in p = - i V  and is 
a local operator. For the present G can be any complex number, but in the 
next section we shall present arguments to restrict it to certain values. 

The coordinate space wave function, ~(x, t), is assumed to satisfy the 
Schr6dinger equation 

i aq,'/Ot = H$  (2.3) 

with p = - iV.  Because of (2.2), $ also satisfies the Klein-Gordon equation 

(02/0t 2 -- 10'2 + m2)¢ = 0 (2.4) 

In fact, for G = -+i, (2.3) is the Dirac equation, and for G = 0 it has the appear- 
ance of the Sakata-Taketani spin-0 equation (Sakata & Taketani, 1940; Heitler, 
1943), although it has twice as many components as the latter. 

To emphasize that the Hamiltonian (2.1) describes particles of  mass 
+m having both energy signs, we note that 

= i[H, x]_ 

= (/93 + ip2)(1 + Ge)p/m + iG[l* (2.5) 

is such that 
/~ 4= pH -1 = p i l e  -2 (2.6) 

Thus (Guertin and Guth, 1973; see also Guth, 1962), the matrix elements of  
x exhibit Zitterbewegung in the "charge space" o f  positive and negative energy 
states, and the presence of both signs of the energy requires the dimension of  
the Hamiltonian to be twice that of the number of  spin degrees of  freedom. 
Since H has been assumed to be a four by four operator, it must describe 
either spin-½ particles or spin-0 particles. 

Let us stress that the operator p, whose components satisfy 

[pi, p]] - = 0 (2.7a) 

is the canonical momentum operator and generates space translations. The 
relations 

[Pi, H] _ : 0 (2.7b) 

express the invariance of  the Hamiltonian under such translations. The invari- 
ance of  (2.3) under rotations is assured by demonstrating the existence of  an 
angular momentum operator J satisfying 

[Ji, p]]- = i ~ eijkpk (2.7c) 
k 

[Ji, H] - = 0 (2.7d) 

[di, Jj]- = i ~ eijkJk (2.7e) 
k 
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and by requiring that under an infinitesimal rotation of magnitude l 0 [ about 
the direction 0 = 0/l e i the wave function transforms into 

~ ' (x ,  t) = [1 - i0"J]  if(x, t) (2.8) 

The spin is determined by J in the rest frame, but equations (2.8) alone are not 
sufficient to uniquely fix J or to determine the spin; i.e., it is possible to show 
that (2.7) allows either spin-½ or spin-0. In the former case there is a single 
irreducible representation for each energy sign, whereas in the latter case there 
are two such representations. 

In order to guarantee that the Hamiltonian (2.1) describes spin-½ particles, 
an additional assumption is needed. One may, for example, require that it be 
possible to decompose J into an orbital part, x x p, and a spin part, S, that 
commutes with x; this requirement is equivalent to assuming that x transforms 
like a three-vector under rotations; i.e., that 

[Ji, x j ] -  = i ~ eij~xk (2.9) 
k 

One finds that when G does not identically vanish, equations (2.7) and (2.9) 
require that 

J = x x p +~ /2  (2.10) 

and spin ½ is the unique possibility, but that when G = 0 one may have either 
(2.10) or 

J = x x p  

which allows spin-0 particles. To restrict our considerations to spin-½ particles 
for all values of  G, we may require that the spaces of positive and negative energy 
states be separately irreducible; for G :P 0 this is equivalent to (2.9), but it is a 
stronger assumption than (2.9) when G = 0. Another possible assumption is that 
the case G = 0 be consistent with the limit of the more general case as G -+ 0. 

3. The Metric 

The reality of  the expectation value of any observable (9 requires the exist- 
ence of a Hermitian metric operator M such that 

M(9=(9?M (3.1) 

In particular, (3.1) must be valid when (9 is either H, p, or J, but since we are 
not requiring x to be an observable, it need not be consistent with (3. t).  The 
normalization of the wave function is given by 

(~, ~)M = f d3x~y*(x,/)M~(x, t) (3.2) 

and the expectation value of any observable (gby 

(4, 6ff)M = f d3xff?(x,  t)Md)q;(x, t) (3.3) 
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One can demonstrate that for a free particle theory there always exists a 
positive definite metric M+ and an indefinite metric M_; in the latter case 
<~, ~)M_ is positive if ff contains only positive energies and negative if it 
contains only negative energies. For example, when G = +-i in (2.1), in which 
case one has the Dirac Hamiltonian, one may use M+= t andM_ = E-ltt. When 
G is real one may use M+ = p3E-1H and M_ = P3, the same forms one has in 
the Sakata-Taketani spin-0 and spin-1 theories. But the use of an indefinite 
metric with the Dirac Hamiltonian or of  a positive definite one with the 
Sakata-Taketani Hamiltonian leads to inconsistencies when one second 
quantizes the equations in the usual manner. In order that the energy be 
positive definite in the second-quantized theory, one must employ Bose 
statistics when the metric is indefinite and Fermi statistics when it is positive 
definite (e.g., Pauli, 1940). On the other hand, it is also generally assumed 
(e.g., Streater & Wightman, 1964) that causality requires either [~ (x, t), 
$(x ' ,  t ' ) ] -  or [$(x, t), $(x ' ,  t)]+ to vanish when the separation of the points 
(x, t) and (x' ,  t') is spacelike, an assumption that requires Fermi statistics for 
a lNrac field and Bose statistics for a Sakata-Taketani field. Thus, only the 
choice M+ = I leads to a consistent second-quantized Dirac theory, and only 
the choice M_ = P3 leads to such a Sakata-Taketani theory. 

Since we are not at the present time concerned with second quantization 
and wish to confine our discussion to the first-quantized theory based on the 
Hamiltonian (2.1), it is interesting to note that the acceptable metrics in the 
Dirac and Sakata-Taketani theories both satisfy 

[M, x]_ = 0 (3.4) 

and are thus independent of p. This means that when interactions are intro- 
duced there is no difficulty in preserving the relation 

MH = HtM (3.5) 

whereas i fM depends on p in the free-particle case it is by no means obvious 
how to define Min  the interacting case so that (3.5) is valid. In fact, although 
it was not so stated there, this was the author's main motivation for assuming 
the relations (3.4) for the relativistic Hamiltonian theories discussed elsewhere 
(Guertin, 1974, 1975). 

For the reasons introduced in the preceding paragraph, let us therefore 
postulate that (3.4) must be valid for a theory based on the Hamiltonian (2.1). 
Then, either (i) G = -+i and M = 1, in which case one has the Dirac Hamiltonian 
and observables are Hermitian, or (ii) G is real and M = #3, in which case our 
equation (2.3) becomes a candidate for a new spin-½ theory that is not equi- 
valent to that of  Dirac because of  the indefinite metric. 

4. Discrete Symmetries 

For a theory such as the one established so far to be invariant under space 
inversion there must exist a linear operator SP such that (Foldy, 1956; Guertin, 
1974) 
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[5 ~, p]+ = 0 (4.1a) 

[Y,  J]- =0 (4.1b) 

[5¢, H]- = 0 (4.1 c) 

Then (2.3) is invariant under space inversion if the wave function ~ transforms 
into 

ff'(x, t) = ~9°~(x, t) (4.2) 

In order to have invariance under time inversion there must exist an antilinear 
operator ~" with the properties (Foldy, 1956; Guertin, 1974) 

[J-, p]+ = 0 (4.3a) 

[ f ,  J]+= 0 (4.3b) 

[J ' ,  HI_ = 0 (4.3c) 

and, in addition, ~ must transform into 

~'(x, t)= f f - ~ ( x , - t )  (4.4) 

For the theory to be invariant under charge conjugation one must have an 
antilinear operator ~ such that (Foldy, 1956; Guertin, 1974) 

[cg, p]+ = 0 (4.5a) 

[c.ff, j ] +  = 0 (4.5b) 

be ,  a l +  = 0 (4.5c) 

and, furthermore, ~' must transform into 

~'(x, t) = ~(~(x, t) (4.6) 

There is also the possibility of having a theory that is invariant under some 
combination of these operations, although not under the individual ones. Thus, 
invariance under the CPT transformation (simultaneous charge conjugation 
and space-time inversion) results from the existence of a linear operator ~ with 
the properties 

[~, Pl+ = 0 (4.7a) 

[~, Jl-  = 0 (4.7b) 

[.~, ~ +  = 0 (4.7c) 

provided that ff is transformed into 

¢ ' (x ,  t) = ~ ~ (x, - t) (4.8) 

The square of any discrete symmetry operator should have no physical 
effect. However, since quantum mechanics requires only a ray representation, 
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one can only conclude that if ~ i s  a discrete symmetry  operator for the 
physical system 

~ 2  = e F  (4.9a) 

where I eF I = 1. Furthermore, if N is any other symmetry  operator for the 
system whose physical effect commutes with that of  J ,  then the "equality 
up to a phase factor r~Fc" 

~-~= Z?FG~-~ (4.9b) 

is all that quantum theory requires (see, e.g., Wightman, t 960; Wigner, 1964). 
If a physical theory of the type being discussed is invariant under space inver- 
sion, time inversion, and charge conjugation, one usually postulates that the 
corresponding operators are consistent with (4.9). Then (e.g., Guertin, 1974) 
one can always choose 5 P, J ,  and eft such that 

,5 g2 = 1 (4.10a) 

if'2 = (_1)22 (4.10b) 

eft2 = - e ( -  1)22 (4.10c) 

~ y =  f fSg  (4.10d) 

jeff= +_ ~ , j -  (4.10e) 

5geff = r /~o  cp (4.1 Of) 

where e = +1 or - 1  and where r7 = +1 or - 1 .  There are thus four inequivalent 
possibilities, depending on the signs of e and of r? in (4.10c) and (4.10f), re- 
spectively [the two sign possibilities in (4.10e) are equivalent]. 

It was mentioned in Section 3 that one can always force either a positive 
definite metric or an indefinite metric on a free-particle theory of  the type 
under discussion, but in general neither commutes with x. Similarly, one can 
always find four inequivalent sets of  operators 54°, Y ,  and cg satisfying the 
properties (4.1), (4.3), and (4.5), each set being consistent with one of the four 
possibilities allowed by (4.10). However, in general none of these sets will be 
such that 

[..9 a, x]+ = 0 (4.t la)  

[ J ,  x ] -  = 0 (4.I lb )  

[eft, x]_ = 0 (4.1 lc) 

the properties required if x is to transform like a vector. We earlier rejected a 
metric that did not commute  with x because it is not clear how property (3.1) 
could continue to be satisfied when interactions are introduced. Similarly, it is 
difficult to see how the relations (4.1), (4.3), and (4.5) can be maintained in 
the presence of  interactions if (4.11) is not valid. We shall therefore postulate 
(as in Guertin, 1974) that a necessary and sufficient condition for (2..3) to be 
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invariant under space inversion is the existence of  a space inversion operator 
5 ¢ satisfying (4.1) and (4.1 l a). Likewise, we assume that (2.3) is invariant 

under time inversion if and only if there exists a time inversion operator ~'- 
satisfying (4.3) and (4.1 lb).  In addition, we state that a necessary and suf- 
ficient condition for (2.3) to be invariant under charge conjugation is the 
existence of  a charge conjugation operator cg with the properties (4.5) and (4.1 tc). 
Finally, we assume that (2.3) is invariant under CPT if and only if there exists a 
CPT operator 5~ with the properties (4.7) and 

[~ ,  x]+ = 0 (4.12) 

Let ~ be the familiar operator that anticommutes with x and with p, but 
which commutes with ~ and with the p matrices. Then 

~ =  P l ~  (4.13) 

has all the required properties to be a CPT operator.  It has been shown (Guertin, 
1974) that a Hamiltonian theory with the metric M = I or the metric M = P3 
always possesses a charge conjugation operator ~ .  Let K be the operator that 
takes the complex conjugate of  all expressions standing to the right of  it and 
let 

Then 

c = exp(-iTr 02/2) (4.14) 

cg(1) = P z c R  (4.15a) 

has the required properties if  and only i f M  = I and 

~(2) = p 1 eK (4.15b) 

has them if and only i f M  = P3. 
For the I~rac Hamiltonian, in which case G = -+i and M = I ,  the properties 

(4.3) and (4.1 lb)  are satisfied by 

o j  = cK (4.16) 

so if" is a time inversion operator for the Dirac equation; one also finds that a 
space inversion operator consistent with (4. I)  and (4.11 a) is 

~90(2) = +P3 ~ (4.17) 

For real values of  G 4: 0, no operators 5 ~ and 3"  that are consistent with (4.1), 
(4.3), and (4.1 la)  and (4.1 lb)  exist, so the theory does not meet our criteria 
for invariance under either space or time inversion. However, from the invari- 
ance under both  charge conjugation and the CPT transformation, we know 
that the theory is invariant under simultaneous space-time inversion. An 
appropriate operator is 

~q = ~cK (4.18) 
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We also note that for G = 0, when e does not appear in the Hamfltonian, the 
properties (4.1), (4.3), and (4.11 a, b) are satisfied by J "  in (4.16) and 

~o(1) = ± ~  (4.19) 

One can rule out space inversion and time inversion invariance for the case 

G = 0 by requiring that it be consistent with the limit of the more general case 
as G -+ 0 through real values. 

One could rescue the space and time inversion invariance of the theory for 
real values of G 4:0  by allowing a "parity doubling" to 4(2J + 1) components 
(for a discussion of how "parity doubling" can occur in a manifestly covariant 
theory, see, e.g., Hurley, 1971, 1974). Since such a procedure leads to other 
complications we shall not adopt it. 

5. Invarianee under Proper Orthoctwonous Poineard Transformations 

One can assure the invariance of the theory discussed so far under trans- 
formations belonging to the proper orthochronous Poincard Group, 3~+ * , if 
there exists a boost operator K such that (Fotdy, 1956; Guertin, 1974) 

[pi, Ki ]- = - i86H (5.1 a) 

[H, 1<41- = - ipi  (5.1b) 

[Ji, KI]_ = i E eiil~Kk (5.1c) 
k 

[Ki, 1<41- = - i  E eiikJk (SAd) 
k 

and, furthermore, 

K = 3,/KtM (5.2a) 

[~, K + tp]_ = 0 (5.2b) 

[W, K]+ = 0 (5.2c) 

In addition, if operators 5g and 3"  having the properties introduced in the 
preceding section exist, it is required that 

[5 °, K]+ = 0 (5.3a) 

[ S ,  K +  tp]_ = 0 (5.3b) 

Then (2.3) is invariant under Lorentz boosts provided that under an infinitesimal 
boost determined by the real vector X the wave function transforms into 

~'(x, t) = (1 + iX. K)¢(x, t) (5.4) 

Note that the general form of the wave function ~(x, t) is determined not 
only by the Hamiltonian but also by the particular generator chosen to generate 
boosts. If (5.1), (5.2), and also, when applicable, (5.3) do not uniquely deter- 
mine K, then one must adopt some additional criteria in order to specify a 
unique boost operator. 
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Instead of attempting to solve (5.1) for the most general form of K, one 
can demonstrate the possibility of basing a ~ ÷  ~ -invariant theory on the 
Hamiltonian (2.1) by demonstrating the equivalence of (2.3) to a Foldy 
canonical equation (Foldy, 1956) 

i ~ F / ~ t  = H F ~  F (5.5) 

where 

HF = p 3E (5.6) 

and where ~F is the wave function in the Foldy canonical representation. This 
equivalence is established if there exists a generalized Foldy-Wouthuysen 
operator lg (see, e.g., Foldy and Wouthuysen, 1950; Tani, 1951; Guertin, 1975a) 
such that 

p = WpW -q (5.7a) 

J = WJW -~ (5.7b) 

H =  WHFW -~ (5.7c) 

These relations do not uniquely determine W, but once one has given some 
criteria for doing so one obtains a#+*-invariant theory by requiring that 

= w~ ~ (5.8) 
and then 

K = 14ZKF ~¢~-1 ( 5 . 9 )  

generates Lorentz boosts, where 

K F = 1 [x, HF]+ -- p3(E + m) -1 l ~ x  p -- tp (5.10) 

is the boost generator in the Foldy canonical representation. In fact, correspond- 
ing to any other observable (9 in our representation there exists an operator (gf 
such that 

0 = W(.0F W "-1 (5.11) 

In Section 3 we restricted the metric to the two possibilities M = I and 
M= P3 by requiring it to commute with x. Since the normalization of the 
wave function and the expectation value of any observable are independent 
of the representation, one has 

(~, $)M = (¢F, fF)M (5.12a) 

(t~ , (~])M = ( ~F (flFfF>M (5.12b) 

According to the above 

W -1 = MWCM 

so W is unitary (pseudounitary) if H is Hermitian (pseudo-Hermitian). 

(5.13) 
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It is easy to write down the most general form for an operator I+' that 
satisfies (5.7) and (5.13). Let us first rewrite the Hamiltonian (2.1) using the 
helicity projection operators 

+ = 1(1 + A#- _ a -P)  (5.14) 

where p = pip. These operators satisfy 
r 

A#UA~ = 6uu,A~ u (5.1 5) 

Thus, one may write 

H= E Hua#u (5.16a) 
# 

where 

Hi  = (Pa + iP2)( 1 + GZ)p2/2m + iGplP + Pa in (5.16b) 

We may therefore write the Foldy-Wouthuysen operator and its inverse in the 
forms 

w= E w.a~" (5.17a) 
# 

~'-1 = E I~ulA~ u ( 5 . 1 7 b )  
/2 

Equations (5.7) and (5.1 3) are satisfied provided that 

If+ = gZ-+ exp[-i(95± + 0_+pa)] 

~+1 = exp[i(95± + 0+_P3)] ~-;1 

(5.1 8a) 

(5.t8b) 

where 0+ and 95_+ are real functions o f p  and where 

g2-+ =Ug(E +H±p3) (5.19a) 

~2;_ 1 = ~ ( E  + 03H_+) (5.19b) 

{ m / ~/2 
~= E(E + m)[(1 + G2)E + (t - GZ)m] J (5.19c) 

The functions 0±(p) and 95±(p) must, of course, be consistent with (5.2b) 
and (5.2c) and, when applicable, (5.3), as will be discussed in the next section. 
One forces boost invariance on the theory by specifying the forms of these 
four functions and then defining the boost operator by (5.9) and the wave 
function by (5.8). Note that for the case G = -+i and 0± = 95_+ = 0 we have the 
familiar Foldy-Wouthuysen operator for the Dirac theory, and that for 
G = 0± = 95_+ = 0 the Foldy-Wouthuysen operator has the same form as the 
operator found by Case (1954) for the Sakata-Taketani Hamiltonian and 
generalized by the present author (Guertin, 1975a) to arbitrary spin. 
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6. The Boos t  Generator 

The considerations of,the preceding section were sufficient to demonstrate 
that a ~+t -invariant free-particle theory can be based on the Hamiltonian (2.1). 
In this section we shall discuss the boost generator K, in particular its nonlocal 
nature when G is real. 

One can obtain the specific form of  the boost generator from (5.9), (5.10), 
(5.14), and (5.17). The result is 

K = ½ [x, H]+ + r -  tp (6 .1a)  

where 

r = - ( l / 4 p  2) E [Hu ..... mWup3W-_lul n x p 
tt 

- ( i m / 4 p  3) ~ ( - - 1 ) ( ' - , ) / 2  Wup 3 W_-l(p 2 o - ~ . p p )  
tz 

- ( / E / 4 p ; )  Z [W'~P3W; 1 - W u P 3 ( w u l )  '] [P + ( - 1 )  0-")/2'7" P] P 

" (6.1b) 

Here we have adopted the convention that if F is any function of p, then F '  
is its derivative with respect to p. For r/u = 1 or 7/# = ( - i ) (  1-")/2 one has, 
according to (5.18), 

W-1 E 71. G p3 --.  

= ~ 7/u e x p [ - i ( 0 .  - ¢_u)] [~2.p3~2.lu cos(0+-- 0-)-i(-1)('-")/2a.~2-~ 

sin(O+- 0_)] (6.2a) 

Furthermore, 

w',p3 r~' - w_+p3(~')' 
= fZ" p 3 fZ~ 1 - fZ+ p 3 (~+1), _ i20'+ - i2~'.t t+E -a (6.2b) 

One finds, using (5.19), that 

p2 m [(1 - G2)E+(1  + GZ)m] 

G(1 + G2)(E - m)p + 
i e [ ( 1  + G 2 ) E  + (1 - G2)m] (6 .3a )  
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( t  + c2)(e - "0 
= T-i P3 (1 + G2)E + (1 - G2)m 
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+ ip21 Gp +(1 + G2)E(E + m) - 2G2m 2 
E E[(1 + G2)E + (1 Z GZ-~m] 

. 1  

(6.3b) 

gZ-+Pag2-+-' fZ+p3(~2__+a) , = (1 + GZ)G (6.3c) 
¥ie[(1 + a2)e + (1 - G2)m] 

When the conditions (5.2b, c) are imposed on K, one finds that ~ and 4~- 
must be equal and independent of  p and that,  in addition, 

0 + + 0'- = 0 (6.4) 

Then (6.2) and (6.3) simplify to yield, for the various terms in (6.1b), 

Z [G - .,rv.p~ w-~] 
# 

= (P3 + iP2)( 1 + G2) - -  + 2p3m - (P3 + iP2)( 1 + G2) 
m /3 

~_m~ [(1 - a~)e + (1 + a2)m] 1 
+03 T d T ~ - ( 1  - G 2 ) m ] J  cos(0+-0_)  

2Gpm [ (1 + G2)(E - rn) + iP2] sin(0+ - 0-) 
+ e [p3 (1 + a 2 ~ ,  + (1 - G~)m ] 

(6.5a) 

W--1 Z (_1)o-.~/2 w.p3 _.  
I.L 

i2 
- {[G(1 + G2)(E - re)p] c o s ( 0 + -  0-) 

el(1 + G2)E + (1 - G2)ml 

- [(1 + G2)E(E + m) - 2G2m z ] sin(0+ - 0-)} (6.5b) 

2 [W~p3~G 1 - Wup3(~l)  '] = 0 (6.5c) 
# 

(1 + G2)a(e - m) 
Eu (-1)(I-u)/2[W'uPaI4FU' - WuP3(I~u')'] = - i 2  E[(1 + G2)E +(1 - G2)m] 

- i 2 ( 0 + -  OL) (6.5d) 
One may, furthermore,  verify that if G = +-i, then either of  equations (5.3) 
requires 0+ and 0_ to be equal and independent of  p; one thus obtains r = 0 in 
(6.1a), the usual result for the Dirac theory (Foldy, 1956; Fuschich et al. 
1971 ; Kolsrud, 1971 ; Guertin, 1974, 1975a), and the theory is manifestly 
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covariant. Thus, the manifest covariance of the Dirac theory is a consequence 
of its invariance under the various discrete symmetry operations. 1 

It is interesting to discuss further the conditions under which the wave function 
is manifestly covariant, i.e., those conditions under which the effects of an 
infinitesimal transformation belonging t o ~ +  * can always be expressed as the 
sum of an operator that acts only on the continuous space-time indices of 
and of  one that acts only on its four discrete indices that express the spin and 
"charge space" degrees of  freedom. Under an infinitesimal space translation 
by the amount d, the wave function transforms into 

@'(x, t) = [1 - d "V] ~(x,  t) (6.6a) 

and with the aid of  (2.3) we see that the effect of  an infinitesimal time trans- 
lation by the amount  D is to transform ff into 

~ ' (x,  t) = [1 - D  O/at] ~(x, 0 (6.6b) 

In each of the above two examples only the space-time indices of  ~ are affected 
by the transformation. On the other hand, for an infinitesimal rotation, (2.8) 
and (2.10) yield 

~ ' (x ,  t) = [1 - 0 - x  x V - i0"(~/2)] ~(x, 0 (6.7) 

a relation that exhibits the decomposition of the transformation into a part 
affecting only the space-time indices and into a part affecting only the discrete 
indices. To consider boosts, we first note that (6.1a) may be written in the 
form 

K = x H  - tp + r '  (6.8a) 

where 

r '  = -li5¢ + r (6.8b) 

with ~: given by (2.5). From (2.3), (5.4), and the above we see that under an 
infinitesimal boost  ~ goes into 

~k'(x, t) = [1 - X. (x  3/3t + tV) + i;~-I"] ~(x, t) (6.9) 

Thus, ~ transforms in a manifestly covariant manner if I "  depends only on the 
p matrices and on a.  When G = +i, inspection of (6.1), (6.4), and (6.5) shows 
that necessary and sufficient conditions for manifest covariance are the equali- 
ties 0+ = 0_ and 0" = O; then r vanishes identically and 

I " =  -~ip 1 a/2 

There are no other values of G and 0+_ that yield manifest covariance. Con- 
sequently, if one were to require the manifest covariance of the theory, as is 
usually done, only the Dirac equation would survive, and we shall therefore 
not impose such a requirement on our new equation. 

1 On the other hand, if one postulates manifest covariance instead of invariance under the 
various discrete symmetry operators, then operators ~ ,  ~,  and f consistent with (4.1), 
(4.3), (4.5), (4.11), (5.2), and (5.3) exist. 
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It is, of course, obvious from direct inspection of the Hamiltonian (2.1) 
and the Schr6dinger equation (2.3) that the theory cannot be manifestly 
covariant for real values of G, since it is not symmetric in the space and time 
indices. We note that by introducing a six-component wave function ~ it is 
possible to reexpress (2. t)  and (2.3) in the form 

(/3 .p - m)~ = 0 (6.10) 

and one might thus hope to obtain a manifestly covariant equation, just as one 
could obtain the five- and ten-component manifestly covariant Duffin-Kemmer- 
Petiau equations of the form (6.10) for spin 0 and spin 1 from the corresponding 
Sakata-Taketani Hamiltonians (for this relationship, see Sakata & Taketani, 
1940; Heitler, 1943; Fischbach et al., 1972). However, this procedure does not 
lead to manifestly covariant equations for real values of G. 

It is clear from (6.1b) and (6.5) that r is generally not a local operator for 
real values of G, i.e., not a simple polynomial in the components of p. Can we, 
at least for one real value of G, find functions 0_+(p) and $_+(p) such that r ,  
and therefore also K, is a local operator? This would lead to criteria for uni- 
quely fixing K, but the author has not been able to find satisfactory functions 
0±(p) and $_+(p) and does not believe it is possible to do so. Thus, if one wishes 
to construct a physical theory based on the Hamiltonian (2.1) with real values 
of G and the metric operator P3, it appears that one must accept nonlocal 
transformation properties under boosts. 

The present author has stressed elsewhere (Guertin, 1975a) that the genera- 
tor of infinitesimal Poincar~ transformations should be defined in the rest 
frame of a particle. The Hamiltonian (2.1) is certainly defined in the rest 
frame, but what can be said about the boost operator when G is real? Inspec- 
tion of (6.1 b), (6.4), and (6.5) shows that necessary and sufficient conditions 
for 

lim K 
p~O 

to exist are the equalities 04(0) = 0_(0) and 0~(0) = 0"(0) = 0. 

7. Continuity Equation 

Let us investigate the most general form of the continuity equation that 
one can obtain from the equation of motion (2.3) using the Hamiltonian (2.1). 
Let U and V be any nonsingular operators that satisfy 

[U,H]_ = [V,H]_= 0 (7.1a) 

V~MU + U~MV = 2M (7.1b) 

After first multiplying (2.3) from the left by (V~)*MU + (U$)?MV and then 
subtracting the adjoint equation one finds that 

ap/at = - V ' j  (7.2) 
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where 

p = 1 [(V~)tM(U~) + (U~#)?M(VVJ)] (7.3) 

j = -i[(1 + GZ)/4m] [(V~)tM(p 3 + ip2)(VUt~ ) + (U~)tM(p 3 + ip2)(VVt~) 

- (VU~)tM(p 3 + ip2)(VqJ ) - (VV~)YM(p 3 + iP2)(U~)] 

+ i(G/2) [(V~)tMp la(U~) + (U~)tMp ~(Vff)] (7.4) 

Furthermore, the "probability density" (7.2) is consistent with (3.2); i.e., 

f d3xp(x, t) = @, ~)M (7.5) 

When G = -+i and U = V = I, (7.3) agrees with the usual result for the Dirac 
equation, 

PD = ~tqJ (7.6a) 

jD = T~tp 101]/ (7.6b) 

Our requirements have forced the Dirac equation to be manifestly covariant, 
so, as is well known, (7.6) gives the components of a four-vector and, as 
stressed by Foldy (1956), we can regard #D as a "charge density" and jD as a 
"charge current density." 

For real values of G, (7.5) becomes 

# = ½ [(V¢)tp3(U~) + (U¢)tp3(V~)] (7.7a) 

j = -[i(1 + GZ)/4m] [(V~)t(1 + pa)(VU~) + (U~)#(1 + pl)(VVVJ) 

--  ( V U ~ J ) t ( t  + /91) (V~/ )  --  ( V V ~ ) * ( 1  -I- p l ) ( U l ~ ) ]  

- (G/2)[(v¢)tpzo(UVJ ) + (U~)tp2a(V~)] (7.7b) 

For a given choice of the generally nonlocal operators Uand V that is con- 
sistent with (7.1), it may be possible to argue the interpretation of p as a 
"probability density" and j as a "probability current density." However, as 
emphasized by Foldy (1956), if we wish to find a "charge density" p and a 
"charge current density" j, they must transform as the components of a four- 
vector; in general, p andj defined by (7.7) do not possess this property. For a 
real value of G, do there exist operators U and V such that # and j yield a 
satisfactory "charge density" and "charge current density"? At 1he present 
time we are unable to answer this question, although it is clear that if the 
required U and V do exist, they will depend on G and also upon 0 +(p) and 
0-(p), the functions appearing in (6.5). 

8. Summary and Discussion 

For arbitrary values of G, the four by four matrix operator H in (2.1) 
yields the relativistic relation between the squares of the energy, the momen- 
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turn, and the mass of a free particle, and for G 4:0 it commutes with the 
angular momentum operator J = x x p + ~/2, but not with x x p alone. Thus, 
for G v ~ 0 it is natural to interpret H as a Hamiltonian describing spin-½ 
particles with both energy signs. However, only when G = +i or when G is real 
does the theory possess a simple metric that commutes with x; in the former 
case one has the usual Dirac Hamiltonian with a positive definite metric and 
in the latter case one has a negative normalization for negative energy states. 
Therefore, in contrast to the Dirac theory, for which the expectation value of 
the ttamiltonian is indefinite, the expectation value of Hin  the new theory is 
positive definite. 

If x is required to transform like a vector under any discrete symmetry 
operation, then one has invariance under both CPT and charge conjugation. 
On the other hand, unlike the Dirac theory, which is invariant separately under 
space inversion and under time inversion, the new theory is not. Although the 
theory is invariant under proper orthochronous Poincar~ transformations, it is 
not manifestly covariant, and it does not appear possible to find a boost 
generator that is a local operator. 

Our analysis for real values of G "has only provided us with the raw material 
for the construction of a complete physical theory," to quote Foldy (1956), 
and whether it actually leads to fundamentally new physical predictions de- 
pends on whether one can consistently introduce interactions. In particular, 
the theory should remain covariant and continue to satisfy 

H= P3H~P3 (8.1a) 

K - p3Ktp3  (8.1b) 

In the case of coupling to an external electromagnetic field, minimal coupling, 
although necessary for gauge invariance, does not necessarily yield a covariant 
theory when one starts from a free-particle theory that is not manifestly 
covariant; additional terms depending on E and B may be required. For 
example, the Sakata-Taketani Hamiltonian in an external electromagnetic 
field (Sakata & Taketani, 1940; Heitler, 1943) contains terms with S.B, 
where S is the spin. A significant difference is that the boost operator for the 
free particle Sakata-Taketani spin-1 Hamittonian (Guertin, 1974,.1975a)is a 
local operator, whereas in the present case the introduction of interactions is 
complicated by the nonlocat nature of the boost generator. In addition, the 
Sakata-Taketani spin-1 Hamiltonian in an external field can be obtained 
directly from the corresponding manifestly covariant Duffin-Kemmer-Petiau 
equation with minimal coupling, whereas we have no manifestly covariant 
equation corresponding to our new Hamiltonian. 

Even if one can introduce electromagnetic interactions in a covariant and 
gauge-invariant manner, we are reminded by Foldy (1956) that the resulting 
theories should "give no contradiction to an appropriate causality condition, 
such as that physically observable effects are not propagated with a velocity 
greater than the velocity of light, at least on a macroscopic scale." Our 
equation is not alone in facing this problem; to date no equation has been 
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found that describes the electromagnetic interactions of particles of spin 
J>~ ~ in a causal manner (see, e.g., Velo & Zwanziger, 196%, b; Wightman, 
1971 ; Velo, 1972; Shamaly & Capri, 1974). 

It should, of course, also be possible to second-quantize the theory with 
real values of G in a consistent manner. Because the normalization in the 
single-particle theory discussed here is not positive definite and because the 
energy is, second-quantization would be inconsistent with Fermi statistics. 
In another paper we shall discuss the possibility of using Bose statistics to 
second-quantize the free-particle theory. 

Our assumption that x commutes with the metric plays an essential role, 
since there exists an equivalence relation between the free-particle Dirac 
Hamiltonian and the Hamiltonian for a real value of G. To distinguish between 
the various Hamiltonians, let HD be that for the Dirac theory and HG that for 
a given real value of  G, and let WD and WG be the corresponding Foldy- 
Wcuthuysen operators introduced in Section 5. Then, according to (5.7c), 

HG = WGW'I~HDWD W G' (8.2) 

However, this transformation carries the positive definite norm 

(~YD, ~YD)_Z = f d3X~yDt(X, t)~D(X, t) (8.3a) 

into the positive definite norm 

(~G, ~G)p3HG = f d3X~Gt(X, t)P3HG~/G(X, 0 (8.3b) 

where 

~C = WG W-3 ~O (8.4) 

The possibility of using the positive definite metric p3Hc with the Hamiltonian 
for a real value of G was mentioned in Section 3. One can similarly show that 
under the transformation just introduced the space inversion and time inversion 
operators for the Dirac theory are transformed into operators that depend on p. 

A possible objection to the approach developed here lies in the difficulty of 
interpreting the significance of x, which is a different operator for each value 
of G. The operator in the Foldy canonical representation that corresponds to 
x in one of our representations, for G = -+i or G real, is 

x = I~-lxW [ 

= x + { E [ ( 1  + G2)E + (1 - G2)m] }-1 (E+m ~ x p  

(1 + G2)(E + m) G 
+ i 2E PIP - iGmP2~- ~ (1 + G 2 ) ( E -  m)(p 3 + ip2)~ 

+E+N 
(1 +G2)(p3 +ip2)+i-~p2 a - p p  (8.5b) 
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and thus depends on G. In the Dirac theory and in any other theory in which 
the boost operator has the form K = ½[x, H]+, (Fuschich et al., 1971; Kolsrud, 
1971; Guertin, 1974, 1975a), x is a canonical "position operator," since it has 
the correct transformation properties under boosts (Cuttle et al., 1963; Durand, 
1973), but  x for any real value of G in our theory transforms in a complicated 
manner, since r ~ 0 in (6.1a). However, one also has r 4= 0 in the Sakata- 
Taketani spin-1 boost generator and its arbitrary spin generalization (Guertin, 
1974, 1975a), so x is also not a canonical "position operator" in such theories. 

What is the physical significance of  G, if it has any? A possible clue is obtained 
by introducing minimal coupling into the Hamittonian (2.1), even though 
the result is not  covariant. One finds that the "magnetic moment"  is propor- 
tional to G 2 , which means that for real values of G it is opposite in direction 
to that of  a Dirac particle with the same charge, i.e., if the charge of  the particle 
is positive the magnetic moment is antiparallel to its spin. This might indicate 
that our equation describes particles with structure; thus, if the particle has a 
positive charge, there might be a concentration of  positive charge near its 
center and a thin layer of  negative charge near its "surface". Of course, the 
extra terms that must be introduced into the equation to obtain covariance, 
if it is indeed possible to do so, might yield the usual type of  magnetic moment 
parallel to the spin for a positively charged particle and antiparallel for a 
negatively charged one. 
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